Decoupled Networks Presentation }

Kai Bian

bkk@glasssix.com

2019,/08,02

Kai Bian (Glasssix Research) 2019/08/02 1/17



Introductio

’ . . * L 4

\\/ / - P

- . 4

\ - *

-
- - -
‘Baseline CNN (Original Convehution) DCNet (SpibereCony) DCNet (BallCon) DCNet (TashConv)
Figure 6: 2D feature visualization on MNIST dataset with natural training.
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Figure 7: 2D feature visualization on MNIST dataset with adversarial training.
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Decoupled Convolution

Original inner product-based convolution:
<w,x >=||w| - ||z|| - cos(0,..)
naturally decoupled

specjal case

Decoupled convolution: |

fw,w) <[l =)} {g(6u,0)

Magnitude: intra-class variation Angle: semantic difference
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Bounded Decoupled Operators

=

» Bounded by a finite constant regardless of its input and kernel

| falw, z)|<e
. Hyperspherical Convolution (SphereConv):

h(l|w|,||=])=a, a=>0 Ja(w,z) = a- g(Owa)),

. Hyperball Convolution (BallConv):

min(||x|| , p) p controls saturation threshold.
fatw,z) = - ELL g, ),

T
A(llwl] =]

« scales the output range_

. Hyperbolic Tangent Convolution (TanhConv):
[l

fa(w,z) = atanh () - g(O(w,z)), tanhx= sinhx _ &t e
P

coshx e+ e°% &
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Unbounded Decoupled Operators

Linear Convolution (LinearConv):

fa(w,x) = allz| - 9(Oww.z)),

Segmented Convolution (SegConv):
tatw2) = { G Loy s o < e
Logarithm Convolution (LogConv):
falw,z) = alog(l + [|z|) - 9(Ow,=)),

Mixed Convolution (MixConv):

fa(w,@) = (@] + Blog(1 + [21) - 9(0(w):

LinearConv LoéCom‘
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Decoupled Operators

Inner Product Hyperspherical Hyperball Hyperbolic Tangent
based Convolution Convolution Convolution Convolution
’
e ..“ w/ Lo w! . -.‘ -_,--
x; "'. ),’_‘ Xy, T IJ“':-—- Xz
Linear Segmented Logarithm Mixed
Convolution Convolution Convolution Convolution

Figure 2: Geometric interpretations for decoupled convolution operators.
Green denotes the original vectors, and red denotes the projected vectors.

Kai Bian (Glasssix Research) 2019/08/02 6/17



Properties of Decoupled Operators

»  Operator Radius (p):
. gradient change point of the magnitude function

falw,x) = a-

min(|lz], p)
- .(} 8 w,x ]
» (Ow.a))

. SphereConv, LinearConv, LogConv have no operator radius

»  Boundedness:
. improves the convergence speed and robustness
. makes variance of outputs small
. constrains the Lipschitz constant of neural network, making the entire

network more smooth

In particular, a real-valued function f: R
— R iz called Lipechitz continuous if
there exists a positive real constant K
such that, for all real x1 and x2,

[f(21) = flzz)| < K2y — 22].

»  Smoothness:
. better approximation rate, more stable, faster convergence
. more computationally expensive
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Angular Activation Function

. Linear Angular Activation:

2
9(Ow.z) = *}Hth] +1,

. Cosine Angular Activation:

g(g{w‘m}) = COS(Q(w.z} }:

. Sigmoid Angular Activation:

1+exp(—ﬁ} 1 — exp(—=

(w ®)

9w =) =

1 —cx])(—ﬁ) 1 + exp( 2=

. Square Cosine Angular Activation:

iw:] _

9(B(p,2)) = sign(cos(6)) -cosz(ﬁ'),

Kai Bian (Glasssix Research)

k controls curvature and
can be learned using

= backpropagation.

2019/08/02

8/17



Weighted Decoupled Operators

> Linearly Weighted Decoupled Operator:

Tlop)=aeg®,,) wmmp [(0.7)=aslo|*e@,,)

» Non-linearly Weighted Decoupled Operator:

1
fa(w, &) = atanh (—) (Ow,z)), Wy fo(w,z)=a lzmh(; [l - flw]]) - g(Praw.a))-

» In practice, linearly weighted operators are favored over nonlinearly
weighted ones due to simplicity.
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| Layer | Plain CNN-9 | CNN-9 for adversarial attacks | ResNet-32 for CIFAR | Standard ResNet-18 | Modified ResNet-18 |
[7x7, 64), 52 [Tx7, 128), 52
Conv0.x NA NIA [3x3.96] 3%3, Max Pooling, §2 | 3x3, Max Pooling, §2
3x3, 128]x1, 82
[3x3, 643 [3x3,32]x3 3% 3,9 33,64 3% 3 198
Convl.x 23 Max Pooli ” " . L. | x5 o x2 dx3,
2 ax Pooling, 52 2% 2 Max Pooling, 52 3% 3,06 3% 364 %1
’ ! 3% 3,128
2 3% 3,192 3% 3,128 33, 2361 1. 52
Con2x | \ier ll"of:};; ) zleiaﬂhmlﬁg, 52 [3 oy 1;)2} x 3x 28| 2 33,356
! ' 3 % 3,256
3x%3,512]x1, 82
Comvix (33, 256]x 3 [3x3, 128]x3 3% 3,384 " 3% 3,256 %9 3)<3.51]2
OMEE 12502 Max Pooling, 52 22 Max Pooling, §2 3xa,384] " 3 x 3,256 43 a10] 3
3x3.5
3% 3,512
Convd.x NfA N/A N/A R %2 [3x3, 1024]x1, 52
3% 3,512
Final | 512-dim fully connected 256-dim fully connected Average Pooling

For Cifar, tramed by ADAM with 128 batch size. Leaming rate starts from 0.001.

For ImageNet, trained by SGD with momentum 0.9 and batch size 40. Leaming rate starts from 0.1.

For adversarial attacks, trained by ADAM. Learning rates are divided by 10 when error plateaus.
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# Learning without Batch Normalization:

Angular activation

Method || Linear

Magnitude CNN Baseline
activation -

Cosine  Sq. Cosine
- 35.30 -
LinearConv 33.39 31.76 N/C
TanhConv 3288  31.88 34.26
SegConv 34.69  30.34 N/C

Table 2: Testing error (%) of plain CNN-9 without BN on CIFAR-100.
“N/C” indicates that the model can not converge. “-” denotes no result.
The results of different columns belong to different angular activation.
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» Learning without ReLU:

Method Cosine Sq. Cosine Cosine Sq. Cosine
wi/o ReLU  w/o ReLU w/ ReLU w/ ReLU

Baseline 58.24 - 26.01 -
SphereConv 3331 25.90 26.00 26.97
BallConv 31.81 25.43 25.18 26.48
TanhConv 32.27 25.27 25.15 26.94
LinearConv 36.49 24.36 24.81 25.14
SegConv 33.57 24.29 24.96 25.04
LogConv 33.62 2491 25.17 25.85
MixConv 33.46 24.93 25.27 25.77

Table 3: Testing error rate (%) of plain CNN-9 on CIFAR-100. Note that,
BN is used in all compared models. Baseline is the original plain CNN-9.
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» Comparison on Cifar

Method || CIFAR-10  CIFAR-100
ResNet-110-original [5] 6.61 25.16
ResNet-1001 [6] 4.92 22.71
ResNet-1001 (64 mini-batch size) [6] 4.64 -
DCNet-32 (TanhConv + Cosine) 4.75 21.12
DCNet-32 (LinearConv + Sq. Cos.) 5.34 20.23

Table 5: Comparison to the state-of-the-art on CIFAR-10 and CIFAR-100.

» Comparison on ImageNet

Standard Modified Modified
Method ResNet-18  ResNet-18  ResNet-18
w/ BN w/ BN wio BN
Baseline 12.63 12.10 N/C
SphereConv 12.68*% 11.55 13.30
LinearConv 11.99* 11.50 N/C
TanhConv 12.47* 11.10 12.79

Table 6: Center-crop Top-5 error (%) of standard ResNet-18 and modified
ResNet-18 on ImageNet-2012. * indicates we use the pretrained model of
original CNN on ImageNet-2012 as initialization (see Section 4.3).
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Adversarial Attacks

» FGSM — Fast Gradient Sign Method
* Explaining and Harnessing Adversarial Examples by Goodfellow.
* Adds weak noise on the original images along the direction of gradients,
making model misclassify image X.
* Finds adversarial perturbations which increase the value of the loss function.

X{u!’t' =X +..F ﬁim](v'\' J(X. Ytrue ]]

. |
Offset Gradient direction of loss

function at point x

¥ BIM — Basic Iterative Method
* A straightforward extension of FGSM: apply it multiple times with small
step size:

X§® =X, X§ =Clipx, {X:{-'"‘ + asign(Vx J(XR™, Ytru })}

e

Element-wise clipping
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Adversarial Attacks

» White-box attack:
* Attackers know the ML algorithm and parameters. Attackers can interact
with ML system during adversarial attacking.

» Black-box attack:
* Attackers do not know the ML algorithm or parameters, but attackers can
interact with ML system, such as observing and judging the outputs of
given inputs.
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Adversarial Attacks

White-box attack:

Target models
Attack Baseline  SphereConv  BallConv  TanhConv
None 85.35 88.58 91.13 91.45
FGSM 18.82 43.64 50.47 52.60
BIM 8.67 8.89 1.74 10.18
None 83.70 87.41 87.47 87.54
FGSM 78.96 85.98 82.20 81.46
BIM 7.96 35.07 17.38 19.86

Table 7: White-box attacks on CIFAR-10. Performance is measured in
accuracy (%). The first three rows are results of naturally trained models,
and the last three rows are results of adversarially trained models.
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Adversarial Attacks

Black-box attack:
Target models

Attack || Baseline SphereConv  BallConv  TanhConv
None 85.35 88.58 91.13 91.45
FGSM 50.90 56.71 49.50 50.61

BIM 36.22 43.10 27.48 29.06
None 83.70 87.41 87.47 87.54
FGSM 71.57 76.29 78.67 80.38

BIM 78.55 11.79 80.59 82.47

Table 8: Black-box attacks on CIFAR-10. Performance is measured in
accuracy (%). The first three rows are results of naturally trained models,
and the last three rows are results of adversarially trained models.
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